久久久精品人妻一二三区无码蜜臀,后入丰满少妇,国产凹凸在线一区二区,亚洲中文久久精品无码99

網(wǎng)站地圖 | XML地圖 | 輔導(dǎo)專題 | 起諾培優(yōu)學(xué)堂

思源教育免費服務(wù)熱線

主頁 > 新聞 > 最新資訊 > 小學(xué)輔導(dǎo) > 小學(xué)數(shù)學(xué)最典型的30道應(yīng)用題例題詳解

小學(xué)數(shù)學(xué)最典型的30道應(yīng)用題例題詳解

日期:2019-09-30 10:34 點擊:


 

歸一問題

 

【含義】在解題時,先求出一份是多少(即單一量),然后以單一量為標準,求出所要求的數(shù)量。這類應(yīng)用題叫做歸一問題。

 

【數(shù)量關(guān)系】總量÷份數(shù)=1份數(shù)量;1份數(shù)量×所占份數(shù)=所求幾份的數(shù)量;另一總量÷(總量÷份數(shù))=所求份數(shù)

 

【解題思路和方法】先求出單一量,以單一量為標準,求出所要求的數(shù)量。

 

例1. 買5支鉛筆要0.6元錢,買同樣的鉛筆16支,需要多少錢?

 

解:買1支鉛筆多少錢?

0.6÷5=0.12(元)

買16支鉛筆需要多少錢?

0.12×16=1.92(元)

列成綜合算式

0.6÷5×16=0.12×16=1.92(元)

答:需要1.92元。

 

例2. 3臺拖拉機3天耕地90公頃,照這樣計算,5臺拖拉機6天耕地多少公頃?

 

解:1臺拖拉機1天耕地多少公頃?

90÷3÷3=10(公頃)

5臺拖拉機6天耕地多少公頃?

10×5×6=300(公頃)

列成綜合算式

90÷3÷3×5×6=10×30=300(公頃)

答:5臺拖拉機6天耕地300公頃。

 

例3. 5輛汽車4次可以運送100噸鋼材,如果用同樣的7輛汽車運送105噸鋼材,需要運幾次?

 

解:1輛汽車1次能運多少噸鋼材?

100÷5÷4=5(噸)

7輛汽車1次能運多少噸鋼材?

5×7=35(噸) 

105噸鋼材7輛汽車需要運幾次?

105÷35=3(次)

列成綜合算式

105÷(100÷5÷4×7)=3(次)

答:需要運3次。

 

歸總問題

 

【含義】解題時,常常先找出“總數(shù)量”,然后再根據(jù)其它條件算出所求的問題,叫歸總問題。

 

所謂“總數(shù)量”是指貨物的總價、幾小時(幾天)的總工作量、幾公畝地上的總產(chǎn)量、幾小時行的總路程等。

 

【數(shù)量關(guān)系】1份數(shù)量×份數(shù)=總量;總量÷1份數(shù)量=份數(shù);總量÷另一份數(shù)=另一每份數(shù)量

 

【解題思路和方法】先求出總數(shù)量,再根據(jù)題意得出所求的數(shù)量。

 

例1. 服裝廠原來做一套衣服用布3.2米,改進裁剪方法后,每套衣服用布2.8米。原來做791套衣服的布,現(xiàn)在可以做多少套?

 

解:這批布總共有多少米?

3.2×791=2531.2(米)

現(xiàn)在可以做多少套?

2531.2÷2.8=904(套)

列成綜合算式

3.2×791÷2.8=904(套)

答:現(xiàn)在可以做904套。

 

例2. 小華每天讀24頁書,12天讀完了《紅巖》一書。小明每天讀36頁書,幾天可以讀完《紅巖》?

 

解:《紅巖》這本書總共多少頁?

24×12=288(頁)

小明幾天可以讀完《紅巖》?

288÷36=8(天)

列成綜合算式

24×12÷36=8(天)

答:小明8天可以讀完《紅巖》。

 

例3. 食堂運來一批蔬菜,原計劃每天吃50kg,30天慢慢消費完這批蔬菜。后來根據(jù)大家的意見,每天比原計劃多吃10kg,這批蔬菜可以吃多少天?

 

解:這批蔬菜共有多少千克?

50×30=1500(千克)

這批蔬菜可以吃幾天?

1500÷(50+10)=25(天)

 列成綜合算式

50×30÷(50+10)=25(天)

答:這批蔬菜可以吃25天。

 

和差問題

 

【含義】已知兩個數(shù)量的和與差,求這兩個數(shù)量各是多少,這類應(yīng)用題叫和差問題。

 

【數(shù)量關(guān)系】大數(shù)=(和+差)÷2;小數(shù)=(和-差)÷2

 

【解題思路和方法】簡單的題目可以直接套用公式;復(fù)雜的題目變通后再用公式。

 

例1. 甲乙兩班共有學(xué)生98人,甲班比乙班多6人,求兩班各有多少人?

 

解:甲班人數(shù):

(98+6)÷2=52(人)

乙班人數(shù):

(98-6)÷2=46(人)

答:甲班有52人,乙班有46人。

 

例2. 長方形的長和寬之和為18厘米,長比寬多2厘米,求長方形的面積。

 

解:長=(18+2)÷2=10(厘米)

寬=(18-2)÷2=8(厘米)

長方形的面積

10×8=80(平方厘米)

答:長方形的面積為80平方厘米。

 

例3. 有甲乙丙三袋化肥,甲乙兩袋共重32千克,乙丙兩袋共重30千克,甲丙兩袋共重22千克,求三袋化肥各重多少千克。

 

解:甲乙兩袋、乙丙兩袋都含有乙,從中可以看出甲比丙多(32-30)=2千克,且甲是大數(shù),丙是小數(shù)。由此可知:

 

甲袋化肥重量:

(22+2)÷2=12(千克)

丙袋化肥重量:

(22-2)÷2=10(千克)

乙袋化肥重量:

32-12=20(千克)

答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。

 

例4. 甲乙兩車原來共裝蘋果97筐,從甲車取下14筐放到乙車上,結(jié)果甲車比乙車還多3筐,兩車原來各裝蘋果多少筐?

 

解:從甲車取下14筐放到乙車上,結(jié)果甲車比乙車還多3筐,說明甲車是大數(shù),乙車是小數(shù),甲與乙的差是(14×2+3),甲與乙的和是97,因此:

 

甲車筐數(shù):

(97+14×2+3)÷2=64(筐)

乙車筐數(shù):

97-64=33(筐)

答:甲車原來裝蘋果64筐,乙車原來裝蘋果33筐。

 

 

和倍問題

 

【含義】已知兩個數(shù)的和及大數(shù)是小數(shù)的幾倍(或小數(shù)是大數(shù)的幾分之幾),要求這兩個數(shù)各是多少,這類應(yīng)用題叫做和倍問題。

 

【數(shù)量關(guān)系】總和÷(幾倍+1)=較小的數(shù);總和-較小的數(shù)=較大的數(shù);較小的數(shù)×幾倍=較大的數(shù)

 

【解題思路和方法】簡單的題目直接利用公式,復(fù)雜的題目變通后利用公式。

 

例1. 果園里有杏樹和桃樹共248棵,桃樹的棵數(shù)是杏樹的3倍,求杏樹、桃樹各多少棵?

 

解:杏樹有多少棵?

248÷(3+1)=62(棵)

桃樹有多少棵?

62×3=186(棵)

答:杏樹有62棵,桃樹有186棵。

 

例2. 東西兩個倉庫共存糧480噸,東庫存糧數(shù)是西庫存糧數(shù)的1.4倍,求兩庫各存糧多少噸?

 

解:西庫存糧數(shù):

480÷(1.4+1)=200(噸)

東庫存糧數(shù):

480-200=280(噸)

答:東庫存糧280噸,西庫存糧200噸。

 

例3. 甲站原有車52輛,乙站原有車32輛,若每天從甲站開往乙站28輛,從乙站開往甲站24輛,幾天后乙站車輛數(shù)是甲站的2倍?

 

解:每天從甲站開往乙站28輛,從乙站開往甲站24輛,相當于每天從甲站開往乙站(28-24)輛。

 

把幾天后甲站車輛數(shù)當作1倍量,則乙站車輛數(shù)就是2倍量,兩站的車輛總數(shù)(52+32)就相當于(2+1)倍,那么

 

幾天后甲站車輛數(shù)減為:

(52+32)÷(2+1)=28(輛)

所求天數(shù)為:

(52-28)÷(28-24)=6(天)

答:6天以后乙站車輛數(shù)是甲站的2倍。

 

例4. 甲乙丙三數(shù)之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三數(shù)各是多少?

 

解:乙丙兩數(shù)都與甲數(shù)有直接關(guān)系,因此把甲數(shù)作為1倍量。

 

因為乙比甲的2倍少4,所以乙數(shù)加上4就變成甲數(shù)的2倍;又因為丙比甲的3倍多6,所以丙數(shù)減去6就變?yōu)榧讛?shù)的3倍;

 

這時(170+4-6)就相當于(1+2+3)倍。那么,

甲數(shù)=(170+4-6)÷(1+2+3)=28

乙數(shù)=28×2-4=52

丙數(shù)=28×3+6=90

答:甲數(shù)是28,乙數(shù)是52,丙數(shù)是90。

 

 

差倍問題

 

【含義】已知兩個數(shù)的差及大數(shù)是小數(shù)的幾倍(或小數(shù)是大數(shù)的幾分之幾),要求這兩個數(shù)各是多少,這類應(yīng)用題叫做差倍問題。

 

【數(shù)量關(guān)系】兩個數(shù)的差÷(幾倍-1)=較小的數(shù);較小的數(shù)×幾倍=較大的數(shù)

 

【解題思路和方法】簡單的題目直接利用公式,復(fù)雜的題目變通后利用公式。

 

例1. 果園里桃樹的棵數(shù)是杏樹的3倍,而且桃樹比杏樹多124棵。求杏樹、桃樹各多少棵?

 

解:杏樹有多少棵?

124÷(3-1)=62(棵)

桃樹有多少棵?

62×3=186(棵)

答:果園里杏樹是62棵,桃樹是186棵。

 

例2. 爸爸比兒子大27歲,今年爸爸的年齡是兒子年齡的4倍,求父子二人今年各是多少歲?

 

解:兒子年齡:

27÷(4-1)=9(歲)

爸爸年齡:

9×4=36(歲)

答:父子二人今年的年齡分別是36歲和9歲。

 

例3. 商場改革經(jīng)營管理辦法后,本月盈利比上月盈利的2倍還多12萬元,又知本月盈利比上月盈利多30萬元,求這兩個月盈利各是多少萬元?

 

解:如果把上月盈利作為1倍量,則(30-12)萬元就相當于上月盈利的(2-1)倍,

 

上月盈利:

(30-12)÷(2-1)=18(萬元)

本月盈利:

18+30=48(萬元)

答:上月盈利是18萬元,本月盈利是48萬元。

 

例4. 糧庫有94噸小麥和138噸玉米,如果每天運出小麥和玉米各是9噸,問幾天后剩下的玉米是小麥的3倍?

 

解:由于每天運出的小麥和玉米的數(shù)量相等,所以剩下的數(shù)量差等于原來的數(shù)量差(138-94)。

 

把幾天后剩下的小麥看作1倍量,則幾天后剩下的玉米就是3倍量,那么(138-94)就相當于(3-1)倍,因此,

 

剩下的小麥數(shù)量:

(138-94)÷(3-1)=22(噸)

運出的小麥數(shù)量:

94-22=72(噸)

運糧的天數(shù):

72÷9=8(天)

答:8天以后剩下的玉米是小麥的3倍。

 

倍比問題

 

【含義】有兩個已知的同類量,其中一個量是另一個量的若干倍,解題時先求出這個倍數(shù),再用倍比的方法算出要求的數(shù),這類應(yīng)用題叫做倍比問題。

 

【數(shù)量關(guān)系】總量÷1個數(shù)量=倍數(shù);另1個數(shù)量×倍數(shù)=另1總量

 

【解題思路和方法】先求出倍數(shù),再用倍比關(guān)系求出要求的數(shù)。

 

例1. 100千克油菜籽可以榨油40千克,現(xiàn)在有油菜籽3700千克,可以榨油多少?

 

解:3700kg是100kg的多少倍?

3700÷100=37(倍)

可以榨油多少千克?

40×37=1480(千克)

列成綜合算式

40×(3700÷100)=1480(千克)

答:可以榨油1480千克。

 

例2. 今年植樹節(jié)這天,某小學(xué)300名師生共植樹400棵,照這樣計算,全縣48000名師生共植樹多少棵?

 

解:48000名是300名的幾倍?

48000÷300=160(倍)

共植樹多少棵?

400×160=64000(棵)

列成綜合算式

400×(48000÷300)=64000(棵)

答:全縣48000名師生共植樹64000棵。

 

例3. 鳳翔縣今年蘋果大豐收,田家莊一戶人家4畝果園收入11111元,照這樣計算,全鄉(xiāng)800畝果園共收入多少元?全縣16000畝果園共收入多少元?

 

解:800畝是4畝的幾倍?

800÷4=200(倍)

800畝收入多少元?

11111×200=2222200(元)

16000畝是800畝的幾倍?

16000÷800=20(倍)

16000畝收入?

2222200×20=44444000(元)

答:全鄉(xiāng)800畝果園共收入2222200元,全縣16000畝果園共收入44444000元。
 

相遇問題

 

【含義】兩個運動的物體同時由兩地出發(fā)相向而行,在途中相遇。這類應(yīng)用題叫做相遇問題。

 

【數(shù)量關(guān)系】相遇時間=總路程÷(甲速+乙速);總路程=(甲速+乙速)×相遇時間

 

【解題思路和方法】簡單的題目可直接利用公式,復(fù)雜的題目變通后再利用公式。

 

例1. 南京到上海的水路長392千米,同時從兩港各開出一艘輪船相對而行,從南京開出的船每小時行28千米,從上海開出的船每小時行21千米,經(jīng)過幾小時兩船相遇?

 

解:392÷(28+21)=8(小時)

答:經(jīng)過8小時兩船相遇。

 

例2. 小李和小劉在周長為400米的環(huán)形跑道上跑步,小李每秒鐘跑5米,小劉每秒鐘跑3米,他們從同一地點同時出發(fā),反向而跑,那么,二人從出發(fā)到第二次相遇需多長時間?

 

解:“第二次相遇”可以理解為二人跑了兩圈。因此,總路程為400×2

相遇時間:

(400×2)÷(5+3)=100(秒)

答:二人從出發(fā)到第二次相遇需100秒時間。

 

例3. 甲乙二人同時從兩地騎自行車相向而行,甲每小時行15千米,乙每小時行13千米,兩人在距中點3千米處相遇,求兩地的距離。

 

解:“兩人在距中點3千米處相遇”是正確理解本題題意的關(guān)鍵。

 

從題中可知甲騎得快,乙騎得慢,甲過了中點3千米,乙距中點3千米,就是說甲比乙多走的路程是(3×2)千米,因此,

 

相遇時間:

(3×2)÷(15-13)=3(小時)

兩地距離:

(15+13)×3=84(千米)

答:兩地距離是84千米。

追及問題

 

【含義】兩個運動物體在不同地點同時出發(fā)(或者在同一地點而不是同時出發(fā),或者在不同地點又不是同時出發(fā))作同向運動。

 

在后面的,行進速度要快些,在前面的,行進速度較慢些,在一定時間之內(nèi),后面的追上前面的物體。這類應(yīng)用題就叫做追及問題。

 

【數(shù)量關(guān)系】追及時間=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及時間;

 

【解題思路和方法】簡單的題目直接利用公式,復(fù)雜的題目變通后利用公式。

 

例1. 好馬每天走120千米,劣馬每天走75千米,劣馬先走12天,好馬幾天能追上劣馬?

 

解:劣馬先走12天能走多少千米?

75×12=900(千米)

好馬幾天追上劣馬?

900÷(120-75)=20(天)

列成綜合算式

75×12÷(120-75)=900÷45=20(天)

答:好馬20天能追上劣馬。

 

例2. 小明和小亮在200米環(huán)形跑道上跑步,小明跑一圈用40秒,他們從同一地點同時出發(fā),同向而跑。小明第一次追上小亮?xí)r跑了500米,求小亮的速度是每秒多少米。

 

解:小明第一次追上小亮?xí)r比小亮多跑一圈,即200米,此時小亮跑了(500-200)米;

 

要知小亮的速度須知追及時間,即小明跑500米用的時間。由小明跑200米用40秒得,跑500米用[40×(500÷200)]秒,所以,

 

小亮的速度是

(500-200)÷[40×(500÷200)]=3(米)

答:小亮的速度是每秒3米。

 

例3. 我人民解放軍追擊一股逃竄的敵人,敵人在下午16點開始從甲地以每小時10千米的速度逃跑,解放軍在晚上22點接到命令,以每小時30千米的速度開始從乙地追擊。已知甲乙兩地相距60千米,問解放軍幾個小時可以追上敵人?

 

解:敵人逃跑時間與解放軍追擊時間的時差是(22-16)小時,

 

這段時間敵人逃跑的路程是:

[10×(22-16)]千米,

甲乙兩地相距60千米。則

追及時間:

[10×(22-16)+60]÷(30-10)=6(小時)

答:解放軍在6小時后可以追上敵人。

 

例4. 一輛客車從甲站開往乙站,每小時行48千米;一輛貨車同時從乙站開往甲站,每小時行40千米,兩車在距兩站中點16千米處相遇,求甲乙兩站的距離。

 

解:這道題可以由相遇問題轉(zhuǎn)化為追及問題來解決。從題中可知客車落后于貨車,追上貨車的時間就是前面所說的相遇時間,

 

這個時間為:

16×2÷(48-40)=4(小時)

所以兩站間的距離為:

(48+40)×4=352(千米)

列成綜合算式:

(48+40)×[16×2÷(48-40)]=352(千米)

答:甲乙兩站的距離是352千米。

 

例5. 兄妹二人同時由家上學(xué),哥哥每分鐘走90米,妹妹每分鐘走60米。哥哥到校門口時發(fā)現(xiàn)忘記帶課本,立即沿原路回家去取,行至離校180米處和妹妹相遇。問他們家離學(xué)校有多遠?

 

解:要求距離,速度已知,所以關(guān)鍵是求出相遇時間:

 

在相同時間(從出發(fā)到相遇)內(nèi)兄比妹多走(180×2)米,這是因為哥哥比妹妹每分鐘多走(90-60)米,那么

 

二人從家出走到相遇所用時間為:

180×2÷(90-60) =12(分鐘)

家離學(xué)校的距離為:

90×12-180=900(米)

答:家離學(xué)校有900米遠。

 

例6. 孫亮打算上課前5分鐘到學(xué)校,他以每小時4千米的速度從家步行去學(xué)校,當他走了1千米時,發(fā)現(xiàn)手表慢了10分鐘,因此立即跑步前進,到學(xué)校恰好準時上課。后來算了一下,如果孫亮從家一開始就跑步,可比原來步行早9分鐘到學(xué)校。求孫亮跑步的速度。

 

解:手表慢了10分鐘,就等于晚出發(fā)10分鐘,如果按原速走下去,就要遲到(10-5)分鐘;

 

后段路程跑步恰準時到學(xué)校,說明后段路程跑比走少用了(10-5)分鐘。如果從家一開始就跑步,可比步行少9分鐘,由此可知

 

行1千米,跑步比步行少用:

[9-(10-5)]分。

所以步行1千米所用時間為:

1÷[9-(10-5)]=0.25(小時)=15(分鐘)

跑步1千米所用時間為:

15-[9-(10-5)]=11(分)

跑步速度為每小時:

1÷11/60=5.5(千米)

答:孫亮跑步速度為每小時5.5千米。

植樹問題

 

【含義】按相等的距離植樹,在距離、棵距、棵數(shù)這三個量之間,已知其中的兩個量,要求第三個量,這類應(yīng)用題叫做植樹問題。

 

【數(shù)量關(guān)系】線形植樹棵數(shù)=距離÷棵距+1;環(huán)形植樹棵數(shù)=距離÷棵距;方形植樹棵數(shù)=距離÷棵距-4;三角形植樹棵數(shù)=距離÷棵距-3;面積植樹棵數(shù)=面積÷(棵距×行距)

 

【解題思路和方法】先弄清楚植樹問題的類型,然后可以利用公式。

 

例1. 一條河堤136米,每隔2米栽一棵垂柳,頭尾都栽,一共要栽多少棵垂柳?

 

解:136÷2+1=68+1=69(棵)

答:一共要栽69棵垂柳。

 

例2. 一個圓形池塘周長為400米,在岸邊每隔4米栽一棵白楊樹,一共能栽多少棵白楊樹?

 

解:400÷4=100(棵)

答:一共能栽100棵白楊樹。

 

例3. 一個正方形的運動場,每邊長220米,每隔8米安裝一個照明燈,一共可以安裝多少個照明燈?

 

解:220×4÷8-4=110-4=106(個)

答:一共可以安裝106個照明燈。

 

例4. 給一個面積為96平方米的住宅鋪設(shè)地板磚,所用地板磚的長和寬分別是60厘米和40厘米,問至少需要多少塊地板磚?

 

解:96÷(0.6×0.4)=96÷0.24=400(塊)

答:至少需要400塊地板磚。

 

例5. 一座大橋長500米,給橋兩邊的電桿上安裝路燈,若每隔50米有一個電桿,每個電桿上安裝2盞路燈,一共可以安裝多少盞路燈?

 

解:橋的一邊有多少個電桿?

500÷50+1=11(個)

橋的兩邊有多少個電桿?

11×2=22(個)

大橋兩邊可安裝多少盞路燈?

22×2=44(盞)

答:大橋兩邊一共可以安裝44盞路燈。

年齡問題

 

【含義】這類問題是根據(jù)題目的內(nèi)容而得名,它的主要特點是兩人的年齡差不變,但是,兩人年齡之間的倍數(shù)關(guān)系隨著年齡的增長在發(fā)生變化。

 

【數(shù)量關(guān)系】年齡問題往往與和差、和倍、差倍問題有著密切聯(lián)系,尤其與差倍問題的解題思路是一致的,要緊緊抓住“年齡差不變”這個特點。

 

【解題思路和方法】可以利用“差倍問題”的解題思路和方法。兩個數(shù)的差÷(幾倍-1)=較小的數(shù)

 

例1. 爸爸今年35歲,亮亮今年5歲,今年爸爸的年齡是亮亮的幾倍?明年呢?

 

解:35÷5=7(倍);

(35+1)÷(5+1)=6(倍)

答:今年爸爸的年齡是亮亮的7倍,明年是亮亮的6倍。

 

例2. 母親今年37歲,女兒今年7歲,幾年后母親的年齡是女兒的4倍?

 

解:母親比女兒的年齡大多少歲?

37-7=30(歲)

幾年后母親的年齡是女兒的4倍?

30÷(4-1)-7=3(年)

列成綜合算式

(37-7)÷(4-1)-7=3(年)

答:3年后母親的年齡是女兒的4倍。

 

例3. 3年前父子的年齡和是49歲,今年父親的年齡是兒子年齡的4倍,父子今年各多少歲?

 

解:今年父子的年齡和應(yīng)該比3年前增加

(3×2)歲,

今年二人的年齡和為:

49+3×2=55(歲)

把今年兒子年齡作為1倍量,

則今年父子年齡和相當于(4+1)倍,

因此,今年兒子年齡為:

55÷(4+1)=11(歲)

今年父親年齡為:

11×4=44(歲)

答:今年父親年齡是44歲,兒子年齡是11歲。

 

講座預(yù)告

最新活動

熱門課程

小學(xué)詞匯與語法

    思源教育的小學(xué)詞匯與語法采用小班教學(xué)...

硬筆書法培訓(xùn)

    學(xué)書法不僅是掌握一種技能,而且是培養(yǎng)...

一年級看圖寫話

    思源教育的一年級看圖寫話,通過孩子對...

四年級閱讀與寫作

    四年級學(xué)生對閱讀沒有興趣,對寫作心生...

少年書法培訓(xùn)

    學(xué)書法不僅是掌握一種技能,而且是培養(yǎng)...

三年級閱讀和寫作

    思源教育的三年級閱讀與寫作是根據(jù)語文...

五年級閱讀與寫作

    五年級學(xué)生對閱讀沒有興趣,對寫作心生...
標簽:小學(xué)全科輔導(dǎo)    小學(xué)數(shù)學(xué)輔導(dǎo)    小學(xué)全科補習(xí)    
相關(guān)資訊

更多校區(qū)查詢

飲水思源,源自交大

思源教育(原上海交大思源進修學(xué)院,簡稱思源教育)成立于1996年,自建校以來,秉承交大校訓(xùn),依托名校師資,提供專業(yè)的青少年英語輔導(dǎo)、小學(xué)輔導(dǎo)、初中輔導(dǎo)、高中輔導(dǎo)、托班輔導(dǎo)、三校生高復(fù)、藝考生文化課等,學(xué)生遍及全市各區(qū),至今已幫助六萬多余名學(xué)子取得優(yōu)異成績,成功考入理想的各級院校!20余年來思源已成為“中考教學(xué)研究中心”、“中學(xué)個性化學(xué)習(xí)教育基地”、“快速學(xué)習(xí)法”實驗學(xué)校。

  • 二十年教育經(jīng)驗
  • 十余項教育大獎
  • 六萬余名學(xué)員順利畢業(yè)
思源logo尺寸220

總課程咨詢熱線:400-678-9493 服務(wù)時間:9:00-20:00,雙休日照常

手機網(wǎng)站訪問地址:http:///m/ 地址:上海市徐匯區(qū)廣元西路45號交大慧谷 電話:400-678-9493
思源教育LOGO

咨詢熱線:400-678-9493

在線咨詢

乘車路線

思源教育微信公眾號二維碼1

上海思源教育微信平臺

思源教育微信公眾號二維碼2

上海思源教育三校生高復(fù)平臺

Copyright ? siyuanedu.com 上海徐匯區(qū)思源教育培訓(xùn)中心  滬ICP備11008344號

滬公網(wǎng)安備 31010402008017號